Moisture content of masonry and it's effect on the application of coatings.

Moisture in external masonry can originate from a number of sources:-

- Water contained in new construction/repairs e.g. cement render and mortar
- Rising damp generally only within a height of 1.5 metre from ground level
- Building faults including faulty rainwater goods, leaking flashings, ingress through parapet walls
- Damp penetration though retaining walls
- Wet preparation work such as power washing
- Rain ingress water penetration though damaged/friable render, failed pointing and previous poor coatings
- Moisture vapour transmission from activity within a poorly ventilated building. This
 can also present itself as condensation on internal surfaces. See Condensation
 Report*

Some areas of buildings are not suitable for application of coating because of the inherent likelihood of persistent high moisture levels. These include parapet walls, retaining walls and areas below damp proof courses.

Whilst all Andura's masonry coatings are permeable to moisture vapour, excessive moisture levels within the background masonry can lead to efflorescence, blistering, loss of adhesion and increased occurrence of mould growth beneath the applied coating.

In addition to these issues, where new render or mortar has been used, high moisture levels can transport highly alkaline salts which can reduce adhesion and attack some coatings leading to eventual failure.

British Standards (BS6150) – Painting of buildings. Code of Practice makes the following statement:-

NOTE 2. Excessive moisture affects the adhesion of most types of paints, causes blistering and flaking and encourages the growth of moulds. Additionally, in combination with alkalis and salts contained in many wet materials of construction, it is the cause of other difficulties in relation to painting, including efflorescence, alkaline attack and staining. Until the contained moisture has substantially dried out, therefore, there is some degree of risk in applying most types of coatings. Drying out can take a long time even in favourable conditions, a rough estimate being one week of good drying conditions for each 5 mm thickness of wet construction (typically 4 to 6 weeks).

Typically, following preparation of a property which has previously been in a poor state of repair, moisture in the fabric of the building will be a result of earlier rain penetration, power washing and newly applied renders or pointing.

It is difficult to assess the level of moisture within background masonry without some form of measurement.

In BS6150 the term 'dry' when applied to masonry is quoted as being less than 75% relative humidity when measured in equilibrium with the surface.

Moisture meters tend not to give an accurate result because of the presence of electrolytes (salts in solution) within renders and masonry.

The quoted method of measurement is to use a hygrometer enclosed in a sealed box attached to the surface being measured. After a period of time the measurement within the box will indicate the level of moisture within the surface.

A simple indication would be to tape an area of clear polythene onto the surface and check for heavy condensation after 12 – 24 hours which would point to high moisture levels.

In practical terms a typical guide would be to allow 14 - 18 days drying for new render on a substantially dry background and 4 - 6 weeks where the background is saturated with water.

Obviously, in periods of cold damp weather, drying times will be extended whereas warm, dry weather will speed up drying.

Where new render or pointing has been applied, and Classic 21 is the finishing material, it is important that Classic Primer is applied as an alkali resisting barrier coat. We strongly recommend that two coats are applied onto new cement based surfaces ensuring that the quoted spreading rate is achieved.

BS6150 again makes reference to the performance of such primers in relation to high moisture levels:-

Alkali-resisting primers provide a measure of protection against alkaline attack and should always be used beneath oil-based systems applied to substrates in which alkalis might be present. However, it cannot be too strongly emphasized that the essential function of primers is to diminish the risk of failure on substrates that are substantially dry, and they do not obviate the need to allow time for this condition to be reached.